This project leverages computer vision and machine learning techniques to automate the process of detecting cracks in concrete structures. The primary goal is to provide an efficient and accurate method for damage surveillance in buildings, which is crucial for maintaining structural integrity and safety. The project was developed as an entry for the "PS-1, Concrete Crack Detection". The model has achieved an impressive F1 score of 1, indicating its high accuracy in distinguishing between cracked and non-cracked surfaces.